56 research outputs found

    Egocentric Activity Recognition with Multimodal Fisher Vector

    Full text link
    With the increasing availability of wearable devices, research on egocentric activity recognition has received much attention recently. In this paper, we build a Multimodal Egocentric Activity dataset which includes egocentric videos and sensor data of 20 fine-grained and diverse activity categories. We present a novel strategy to extract temporal trajectory-like features from sensor data. We propose to apply the Fisher Kernel framework to fuse video and temporal enhanced sensor features. Experiment results show that with careful design of feature extraction and fusion algorithm, sensor data can enhance information-rich video data. We make publicly available the Multimodal Egocentric Activity dataset to facilitate future research.Comment: 5 pages, 4 figures, ICASSP 2016 accepte

    Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome

    Get PDF
    The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S.aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. Results: We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both “Gilo” and “Shum” groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. Conclusions: The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family

    The draft genomes of five agriculturally important African orphan crops

    Get PDF
    Background: Continuous growth of the world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries current face a serious burden of malnutrition, especially in Africa and South and South-East Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize and rice provide the majority of calories. Therefore, to diversify and stabilize global food supply, enhance agricultural productivity and tackle malnutrition, greater use of neglected or underutilized local plants (so-called 'orphan crops‘, but also including a few plants of special significance to agriculture, agroforestry and nutrition) could be a partial solution.Results: Here, we present draft genome information from five agriculturally, biologically, medicinally and economically important underutilized plants native to Africa; Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera. Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. albida, S. birrea and M. oleifera we have predicted 31707, 20946, 28979, 18937, 18451 protein-coding genes, respectively. By further analysing the expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription factors and starch biosynthesis-related genes in these genomes.Conclusions: These genome data will be useful to identify and characterize agronomically important genes and understand their modes of action, enabling genomics-based, evolutionary studies, and breeding strategies to design faster, more focused and predictable crop improvement programs

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore